A Yup'ik Ethnomathematic Research Framework

Center, A place to begin

Kristie Parsons

University of Alaska Fairbanks

Alaska Native Studies Conference 2014, University of Alaska Southeast, Juneau Alaska

Author Note:

Kristie Parsons, Indigenous Studies, University of Alaska Fairbanks.

I would like to thank Dr. Ray Barnhardt, Dr. Jerry Lipka, Dr. Beth Leonard, Dr. Gary Holton, and Gretchen Murphy for their guidance as I developed this paper; and my fellow Indigenous Studies doctoral cohort Olga Skinner, C. Sean Topkok, Polly Hyslop, Charleen Fisher, Charlene Stern, and Judy Ramos for their in-depth discussions of axiology, epistemology, and cosmology that led to the development of the Indigenous applied definitions presented in this paper.

Financial support for my research efforts and travel to this conference include:

University of Alaska Fairbanks Cross Cultural Studies travel grant, the Graduate School travel grant, and Math in a Cultural Context project funding NSF Grant: Potential contributions of Indigenous knowledge to teaching and learning mathematics, and the US Department of Education Alaska Native Education: Measuring proportionately: Elders wisdom applied to teaching and learning mathematics.

Correspondence concerning this article should be addressed to Kristie Parsons, PO Box 13198, Trapper Creek, AK 99683. E-mail: kparsons@alaska.edu

Abstract

Indigenous communities from New Zealand, Arizona, Hawaii, British Columbia, and Alaska are calling for culturally based education (CBE) as many Indigenous students are identified as non-proficient in academia. In order to develop CBE, research is needed to develop an understanding of the way in which cultural groups understand, articulate and use an academic concept whether or not the cultural group defines the academic concept. The Yup'ik ethnomathematic research framework described in this paper outlines a holistic approach leading to an understanding of how Yup'ik Elders in the Bristol Bay region of Alaska use mathematical concepts embedded within cultural item construction absent of Western instrumentation. This approach recognizes the importance of Elders' particular way of thinking that influence their actions leading to advanced mathematical processes within traditional item construction such as snowshoes. The framework recognizes that the Yup'ik knowledge system includes interconnected elements of spirit, nature, values, and worldview influencing actions.

Key Words: ethnomathematics, Center Point, Yup'ik, Indigenous cosmology, epistemology, axiology, pedagogy, culturally-based education (CBE), Indigenous knowledge system (IKS)

A Yup'ik Ethnomathematic Research Framework

Center, A place to begin

The 2014 Alaska Native Studies Conference, held on Tlingit traditional grounds in Alaska reverberated a call for "Indigenous framework" in education, in research, and in professional practice. Indigenous scholars Dr. Jo-Ann Archibald and Dr. Malia Villegas along with Elders poignantly identified the need to break from traditional dominant research paradigms and to frame Indigenous issues in an Indigenous model and context. An emergent theme was that Indigenous education and research needs to be reflective of the ancestral system of the people being served (researched) in order to honor their culture.

This paper defines the interrelationship of ethnography, mathematics, Indigenous cosmology, epistemology, axiology and pedagogy that define the framework for my research based on "Center Point," *a place to begin*, a concept that has become central in the Elders teachings and essential to accuracy in Yup'ik mathematical processes as identified by the Math in a Cultural Context (MCC) team (Lipka, Andrew–Ihrke, & Yanez, 2009). The combination of mathematics, cosmology, epistemology, axiology, pedagogy, and lifeways is known as an Indigenous knowledge system (IKS).

Dr. Oscar Kawagley, of Yup'ik ancestry, now deceased but a noted scholar of Yup'ik cosmology and science education, in defining Yup'ik IKS clearly identified the importance of cosmology within the process of teaching in Yup'ik culture (Kawagley, 1995). Kawagley describes Yup'ik ways of knowing and doing that are intrinsically tied to *Ellam Yua*, the Creator. Dora Andrew-Ihrke and Evelyn Yanez of Yup'ik ancestry and Yup'ik researchers and educators demonstrate nuances of cosmology in Yup'ik lifeways as they demonstrate everyday Yup'ik cultural activities, share oral history, and provide direct instruction with guided practice to

educators learning to use culturally-based mathematics curriculum (personal observations, 2011, 2012, 2013, 2014). Therefore, I begin the framework for my research by defining some critical interrelated concepts--ethnomathematics, axiology, epistemology and cosmology--which will allow me to describe what I learn from the Elders.

The Alaska MCC project has existed for nearly 30 years. Yup'ik Elders and educators have partnered with Dr. Jerry Lipka to document some of the Yup'ik everyday activities handed down through generations (Lipka, Mohatt, & Ciulistet, 1998). What is unique and obvious is that the Elders' everyday cultural activities contain accurate and sophisticated mathematical processes, and yet they do not utilize the Western system of mathematical practices. How do the teachings of Yup'ik ancestors lead to the precise construction of items such as a sea-worthy vessel *qayaq* (kayak), or a *qaspeq* (kuspuk) from a body measure? How can teachings from Elders help Indigenous and nonIndigenous students succeed in Western math classrooms? What are the math processes contained within the Elders' teachings and within cultural item construction? These questions and more are actively being asked within the context of MCC. This type of research is known as ethnomathematics.

Ethnomathematics Explored & Defined by Bill Barton

What is ethnomathematics? It is a relatively young field of ethnographic research. In 1996, Bill Barton, an ethnomathematician, sought to develop a common definition of ethnomathematics within the context of educational studies (Barton, 1996.) In doing so Barton noted that researchers come to the field with different research motives and applications of their research findings. Barton identified four main intentions of ethnomathematic research: 1) philosophy of mathematics where debating ways in which mathematical knowledge is culturally based; 2) cultural mathematics, i.e. identifying mathematical thought and activity in various

cultures; 3) mathematics evolution, i.e. description of cultural history of mathematics; and 4) politics of mathematics as a cultural issue, identifying how mathematics has affected aspects of society. In addition to researchers' various intentions, Barton identified a variety of descriptions of ethnomathematics as compared to mathematics alone. The table below is a comparison of how ethnomathematicians D'Ambrosio, Gerdes, Ascher, and Lipka view ethnomathematics as compared to mathematics, derived from Barton's 1996 work. Given that my work is situated within the MCC project I have added MCC's principal investigator Jerry Lipka, to Barton's comparison.

Comparison adapted from Bill Barton (1996) Educational Studies in Mathematics with additions by K. Parsons

<u>Mathematics</u>	<u>Ethnomathematics</u>
D'Ambrosio	D'Ambrosio
Aprioristic: knowledge independent of	Relative and evolutionary: knowledge dependent on
experience	experience
 Closed body of knowledge and changes 	Continuous interaction with all members of society
through the activity of mathematicians	Taught informally, practical
 Taught in school, academic 	Value-bonded and validated by individual's world
 Rational and validated by a hierarchy of 	views
authority	 Formation of all knowledge
Gerdes	Gerdes
 Western worldview promulgated 	 Living and changing body of knowledge
	Active reclaiming of a mathematical point of view as
	part of Indigenous culture
	Mathematics in relation to society
Ascher	Ascher
 Closely defined category of knowledge 	 Intersection of mathematics and culture
particular to Western culture	Mathematical thinking in context
Lipka	Lipka
 Logical set of propositions that represent 	o integration of mathematical concepts and practices
an ideal world. i.e. in geometry a line.	from the target culture to formal mathematics
 Math as a science and theory 	o mathematical threads woven into authentic cultural
	knowledge and practices
	everyday "math" is practical

D'Ambrosio, Gerdes, Ascher, and Lipka all define mathematics and ethnomathematics as being culturally-influenced. Current mathematical instruction in the majority of schools is clearly a Western cultural academic construct taught from a dominant society worldview originating in the Mediterranean Antiquity, organized by the Greeks (which expanded to other countries in the Middle Ages) before taking its current academic form in the 14th and 16th centuries. As the Grecian mathematics movement took a strong hold around the world, Indigenous traditional knowledge systems, which include mathematics, have been ignored, rejected, denied, and even suppressed by the dominant society until the 20th century (D'Ambrosio, 2004).

Currently mathematics education teaches mathematics as a theoretical decontextualized construct as described by D'Ambrosio, Gerdes, and Ascher. Mathematics in academia has traditionally been taught as linear, progressive thinking that is built from incremental, interwoven, categorical, decontextualized concepts promulgating Western worldviews.

Traditionally mathematics education defines predetermined principles such as algebra, geometry, and calculus, and teaches through theoretical decontextualized constructs. Ethnomathematics is indirectly taught through demonstration of practical applications in a given cultural context, usually within an activity containing principles such as algebra or geometry. Ethnomathematics is a contextualized living and changing body of knowledge, value-bonded and validated by individual's worldviews, woven into authentic cultural knowledge and practices with values and a particular way of thinking in the individual's culture. Ethnomathematics yields insights to additional methods of mathematical instruction that are contextualized, personally applicable, and allows alternative ways of thinking to be explored and validated.

In my education and teaching experiences, students, parents, and I have openly express anxiety about learning school math, confusion about concept application, and a fear of "getting it wrong." Many parents and grandparents have openly stated to me and my colleagues that they do not understand their children's math homework and cannot help them (they cannot relate to the curricula's application or way of thinking). When grandparents, parents, and their children all express anxiety and a lack of understanding of math concepts as being taught in school, the Western schooling methods have failed 3 generations. However, when my colleagues or I have taught math through a joint activity approach with a cultural context, such as drumming, cooking, or fish rack construction, students generally enjoy learning and can explain and discuss the math used to a nonparticipant such as their parents.

Cultural activity as a venue for ethnomathematic research

When Elders were asked what term they would use for mathematics, they frequently offered *cuqete*-, or measuring (Kisker, Lipka, Adams, Rickard, Andrew-Ihrke, Yanez, & Millard, 2012). The Yup'ik ancestors measured for practical applications, they did not purposefully teach mathematical concepts or processes for the sake of teaching an isolated process called math as is the current predominant education system practice. Yup'ik item construction indirectly teaches mathematical concepts and processes through activity. For example, Elders recently explained that when constructing a snowshoe, wood is selected for specific properties such as hardwood that is fairly straight and of a particular diameter and length. The diameter and length of the wood are proportional variables based on the person's body measures of which the snowshoe is being made. After selecting and peeling the wood, peelings are saved and later used for other construction purposes as it would be wasteful to discard the bark and not utilize it.

The Center Point is identified by a natural dark small circle inside the heart of the wood. The crafter uses the wood's center point to split it in half lengthways, following the natural line of symmetry embedded in the wood. Snowshoes are designed and constructed to the user's body with proportional measures allowing the user to have balance and range of motion. If a person uses a size of snowshoes that is too small or big for them in width or length, they will not be balanced and it will be difficult for them to keep a normal gait. An Elder described how the person's gait would be off and how the snowshoe would behave in relation to the snow, causing the person to prematurely tire.

The Yup'ik snowshoe was constructed with mathematical precision based on body measures, using principles that can be named in mathematics such as body proportional measuring, estimation, counting, symmetry, splitting, scaling, patterns, visualization, spatial reasoning, angles, length, and area (Personal observation, March 22, 2014). Yup'ik mathematics is generative, value-based, and embedded in everyday lifeways as it is within many Indigenous cultures. Ethnomathematics is another Western term invented by researchers in order to describe a culture's practice that includes mathematics, such as the example above.

In 2004 Ubiratan D'Ambrosio, a founding father of ethnomathematic research, presented this description of IKS in the context of ethnomathematics research which coincides with the Yup'ik snowshoe example:

The systems of Indigenous knowledge included, particularly, ways of dealing with space and time and different ways of observing, classifying, ordering, comparing, measuring, quantifying, inferring, inventing, plus coherent systems of explanations of facts and phenomena, based on sophisticated founding myths. These are the basic supporting

elements of every cultural system and include mathematical ideas present in all these systems. (p. VII)

For the purposes of my IKS research I will adopt Barton's 1996 definition of ethnomathematics: "Ethnomathematics is a research program of the way in which cultural groups understand, articulate and use the concepts and practices which we describe as mathematical, whether or not the cultural group has a concept of mathematics" (Barton, 1996, p. 214). I will treat ethnomathematics as a component of an IKS containing features described above by D'Ambrosio and Kawagley.

Cosmology within IKS Ethnomathematics Research

In describing Indigenous research methods, Wilson states that "The sets of beliefs that make up research paradigms are the interrelated concepts of ontology, epistemology, methodology and axiology" (Wilson, 2008). Regarding Inuit epistemology, Bielawski (1990) states that, "Indigenous knowledge, however, is both context-embedded and implies correct, spiritually based relationships within the environment" while making a point that researchers need to be cognizant of epistemology contained within the culture being studied in order to conduct valid research in a culturally-respectful method. Likewise, D'Ambrosio (2004) describes research of a cultural group's mathematical ideas comprising the group's cultural history, and in turn, their axiology, epistemology and cosmology. There has been a steady progression of researchers studying IKS beginning with D'Ambrosio in the 1960's through today, with Kawagley, Wilson, Bielawski, Smith and others identifying a need for a holistic research approach that considers worldview, axiology, epistemology, and cosmology in order to fully understand the perspective of the Indigenous population as knowledge is a social construct.

Axiology, epistemology, and cosmology are familiar terms in ethnographic and scientific research. Classical definitions by Merriam-Webster dictionary are: Axiology -- The study of nature, types, and criteria of values and of value judgments especially ethics; Epistemology -- The study or a theory of the nature and grounds of knowledge especially with reference to its limits and validity; Cosmology -- A branch of metaphysics that deals with the nature of the universe. However, with the rise of the study of IKS over the last 20 years and the development of Indigenous cultural based schools, these terms are incorporated in publications with an Indigenous flavor to describe a given cultural groups' thought process or belief systems. Therefore, I will offer new definitions for each, in an Indigenous context.

<u>Indigenous Axiology</u>: The values, ethics or morals that guide the search for knowledge and influences actions of a cultural group.

<u>Indigenous Epistemology</u>: The way a cultural group thinks and knows; how they engage and used knowledge for a given purpose; includes axiology coupled with how a group thinks about their reality and knows what they know, often learned through oral history and experience.

<u>Indigenous Cosmology</u>: A cultural group's view of the origins of the universe inherited from ancestors including axiology and epistemology with a core belief in the interconnectedness of all things and that all living things possess "spirit."

Figure 1

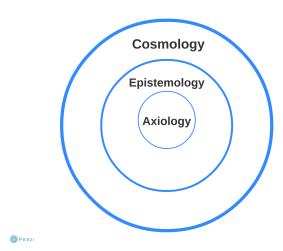


Figure 1 depicts the nested relationships of Indigenous axiology, epistemology, and cosmology. The following example illustrates this nested relationship. Recently, after demonstrating construction of a traditional snowshoe, a Yup'ik Elder engaged me in a conversation about the Yup'ik drum and uses of the drum. He wanted to know my belief and practice of the drum. After I explained that I do own Yup'ik-style drums, and that I play the drum as part of teaching math and for calming upset children, he acknowledged that the drum is very important for dealing with emotions. He continued to explain one ancestral belief in which all the food of all the animals was inside the drum. In January it is important to drum and sing pleasing to the spirits. The drumming and signing become requests to Ellam Yua for a plentiful harvest in the future seasons.

This brief conversation about the Yup'ik drum contains axiology, epistemology, and cosmology, both nested and interwoven. Furthermore, I believe that the conversation is a component of Yup'ik pedagogy. That is, teaching by way of identifying the student's understanding and practice; followed by an oral history lesson, in order to further develop thinking patterns. There was no additional conversation about the snowshoe or drum. However,

in my mind I thought about the connections between snowshoe construction and the drum lesson. Why did he tell me this ancestral belief which stimulated reflections on the many subtle lessons within the snowshoe construction? Is a common practice of the Elders: spontaneous oral history lessons that are not followed by conversation or any other communication? The oral history lesson is essentially a cliffhanger, leaving the student to think through possibilities while making individual and societal connections. This is teaching a way of thinking while teaching Yup'ik axiology, epistemology, and cosmology. Thus, I must consider how axiology, epistemology, and cosmology inform mathematical practices from the perspective of the Elders.

Indigenous Research Framework Design

The framework presented in Figure 2 represents my ethnomathematic research concept and follows Barton's intention of cultural mathematics. Identified mathematical thought and activity within a cultural group leads to the development of culturally-based curriculum. The framework elements guiding my research are: Elders, language, cosmology & worldview, nature/environment, values, pedagogy, cognition, and the MCC project methods. Math concepts identified by MCC surround the Center Point, the place to begin.

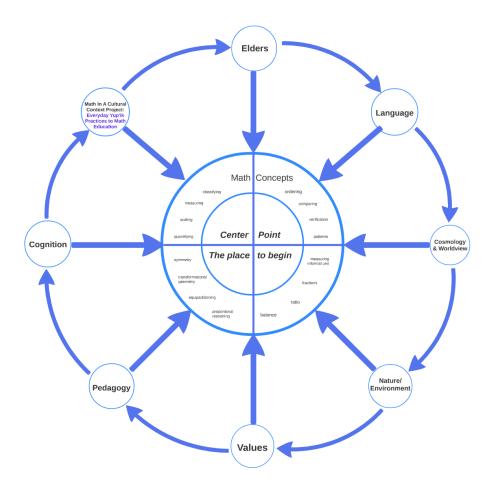


Figure 2

This framework is derived from my doctoral studies at University of Alaska Fairbanks, 28 years of life experiences living and working with Alaska Natives, and current observations of Lipka's MCC methods. For the past 3 years I have been a participant observer in the MCC project. As part of the MCC project, I used MCC curriculum and methods in my special education classroom, contributed to the development of new MCC curriculum, and observed teachers as they were learning to use and understand new MCC curriculum. Most importantly, I have been a student of Yup'ik culture, pedagogy, and ethnomathematics under researcher Dr. Jerry Lipka and Dora Andrew-Ihrke, Evelyn Yanez and other Yup'ik Elders informing MCC.

Figure 2 attempts to model my Indigenous framework with what Anne Fienup-Riordan describes as the Yup'ik motif of successive levels of encompassment (a circle within a circle) (Fienup-Riordan, 1990). Yup'ik cultural artifacts frequently display circles within circles. Fienup-Riordan describes the center, or inner-most circle as the place where the spirits of the dead, both animal and human, reside in an underworld. Fienup-Riordan describes the circle around the center marks the human world, and the outer-most circle represents the canopy of the heavens. Yup'ik ancestors described the ability to move between the worlds at various times for various reasons. The realms are all interconnected and navigable given the right conditions.

The circle model that I developed begins with the inner-most circle illustrated as the intersection of two perpendicular lines forming a + for Center Point. The Center Point concept has emerged as a central mathematical Yup'ik concept that Elder's describe as part of their way of thinking; it is visualized in the mind and then moved into practice. Yup'ik everyday activities are packed full of math concepts that are identifiable and describable in Western math education, and are located in the middle circle of the framework. The outermost circle in the model is formed by linked small circles depicting the interconnectedness of ancestral knowledge as elements of my canopy that make up my Indigenous research framework. The eight interconnected elements point inward, illustrating that the elements are informing identification of mathematical concepts embedded in culture.

Elders

Yup'ik Elders are placed in the North position as seen in Figure 2. They are the most important element of the framework as the knowledge bearers and teachers; in fact, without their teachings, my research would not be possible. All of the other components of the framework are born from what the Elders freely share about the embedded math in their lifeways, language,

ways of knowing, and the worldviews that underlie the cultural traditions and practices. Each Elder brings unique cultural experience from different Yup'ik villages in the Bristol Bay region. When the Elders are brought together they share their knowledge. The Elders verify each other's cultural practices and add depth to concepts with their respective perspectives or village variations. When construction of a cultural activity is the focal point, such as the previous snowshoe example, a powerful transition takes place. As Elders collectively explain societal history related to the processes of snowshoe construction and uses, the activity pulls them into a collective endeavor to be embraced. The common goal of the activity is to document traditional construction of the snowshoe as well as documentation of the language that leads to specific mathematical processes. My research will attempt to name and describe from the Elders' perspective.

Language

Yup'ik language is rich with multiple meanings contained in a single word. Dr. Gary Holton with the Alaska Native Language Center is a MCC project partner assisting in documenting and unpacking the rich knowledge within the language that the Elders use. Essential lessons about math concepts such as symmetry are able to be understood through language study. For example the math concept of symmetry does not exist in isolation within Yup'ik language. The concept of symmetry is a postbase (suffix) which creates embedded meaning within grammar as verification/good/in balance and links directly to cosmology. In the case of symmetry, the Elders often speak similarly of item construction as being "in balance" or "good" or "verifiable" all with postbase use in language coupled with demonstration of a symmetrical item. The Elders' descriptive language can reveal patterns of thinking leading to identification of embedded mathematical concepts.

Cosmology and Worldview

The Elders' teachings and language contain embedded cosmology and worldviews, and this framework element is located in the East position. Worldview provides insights into the nested framework of Yup'ik cosmology. Thus, cosmology and worldview are integrated when expressed by Elders. The distinction here is that worldview is a Yup'ik Elder's subjective perspective on the nature of things, reality, mind, actions, and history, in other words, their cognitive and affective perspectives of Yup'ik within the world (Turner 2008). Yup'ik Elders reveal their view of the origins of the universe as inherited from ancestors which contains a core belief in *Ellam Yua*, a central creator or spirit of the universe. Ellam Yua influences methods of construction, spiritual interventions, an existence of the interconnectedness of all things, and that all things of nature possess "spirit", expressed as *anerneq*, *elillraq*, *tari*, *tarnaq*, or *tarneq*, and a practice to live *niuk* (harmonious) and in *napeckegte* (good balance) with all things. The Elders' teachings and language give rise to an understanding of the way Yup'ik think and know, how they engage and use knowledge to accomplish a given task that is often learned through oral history and experience.

Nature/Environment

Language and cosmology describe an interconnected relationship of the Yup'ik with nature and the environment. The Yup'ik lived successfully with tools and resources provided in nature for thousands of years prior to Western contact. The Elders describe a relationship of balance between Ellam Yua, the Yup'ik, and nature -- three important components that maintain a symbiotic existence. Kawagley identified specifics such as living in harmony with nature; respecting nature's elements of earth, air, fire, water, and spirit; and spirit within all plants and animals. He described the integration of nature and environment or things originating from

nature and environment, in all that is Yup'ik. Nature and environment are components of Yup'ik cosmology and are used to teach values.

Values

Values are placed in the South position of Figure 2. This could also be termed Yup'ik axiology: the values, ethics or morals that guide the search for knowledge and influence their actions to live a good life are embedded in Elder teachings and lifeways. The Elders' teachings and language contain cosmology and worldviews which have values nested within. Axiology is commonly taught indirectly through story, song, dance, or within a passing expression when demonstrating. They are not always spelled out concisely; the listener must pay attention and infer meaning. A few values identified by Kawagley and Lipka are: pleasing to Ellam Yua; humility; do not waste; pleasing to the eye; introspection; flexibility in thinking; accuracy, humor; oral history; be respectful; sharing; hard work; knowledge of language; cooperation; and love for children. Values will unfold from the Elders language.

Pedagogy

The Elder's teachings reveal pedagogy: they are purposefully teaching the MCC project researchers about their ways of doing and thinking. This information is used by Andrew-Ihrke and Yanez to teach classroom teachers, and out of this emerges a Yup'ik style of pedagogy. In order to develop culturally-based Yup'ik curriculum it is important to understand how a Yup'ik teaches another Yup'ik. Kawagley (1995), Barnhardt & Kawagley (1999), Lipka (2005), Lipka, Wong, & Andrew-Ihrke (2012), and others have identified Yup'ik pedagogical approaches of: expert-apprenticeship modeling, cognitive apprenticeship, peer tutoring, guided practice, multidisciplinary, multisensory, storytelling, visualization, experimentation, discovery, inquiry, and observation. Many of these pedagogical approaches are observable; however, they cannot

be fully understood without connecting the language and cosmology that informs the pedagogical approach.

For example, at the March 2014 MCC Elder's meeting, a female Yup'ik Elder was teaching how she crafts baskets from grass. Yup'ik is the first and preferred language of the meeting. The other Yup'ik Elders in the room from various villages wanted to learn her methods. Everyone was offered grass and needles. The Elder began by showing the first step of holding two pieces of grass perpendicular in the form of +, identifying a center point, the place to begin construction. She proceeded by demonstrating how she folds the grass from the center point vertically and then horizontally in a pattern of 3. She then began the stitching.

I could not understand how she got to this point after the demonstration (she demonstrated 3 times how to make the center point). I moved behind the Elder to get a closer look so that I could understand what went wrong with my attempt. She motioned for me to take her beginning basket center and to sew on it as she continued instruction. She chose to teach me specifically with her basket center point; I promptly sat on the floor next to her. She demonstrated how to use the needle and pull the grass thread through with several stitch repetitions. I attempted to sew on her grass center point as she watched. Eventually she made brief comments instructing tighter thread pressure or for me to hold the item differently. The Elder would reach her hand out to signal me to return the item. She indicated that she wanted me to watch her do it again. She repeated showing me how to use the needle and placed nonverbal emphasis on showing me how to correctly hold the center, needle, and thread while stitching. I now understood to hold the item perpendicular on my thigh. The angle and positioning of the core item was important to her construction method. This pattern continued, I stitched some, and

then she would take the item back and demonstrate more. I would then resume my attempts at sewing.

She would tell the other Elders and learners how I was doing. The Elder began to say I was a fast sewer -- like a sewing machine -- with a smile and chuckle. I knew she was pleased with my progress. Some came over to observe my sewing. Other learners would ask her questions about their sewing pieces. They would show her their work and she would briefly explain using hand gestures and minimal language. The instructing Elder kept a watchful eye on how all learners were doing while giving them specific guidance based on their work.

Throughout the lesson she provided positive encouragement to everyone. This came in the form of brief statements or with a silent nod of her head with a smile.

At the end of the 3 hour basket sewing lesson, we shared our work and progress. This was another teaching moment. Some sewed tiny baskets with little grass and others sewed large baskets. Some knew how to sew colored grass into patterns. When I looked at other's work I could see various tensions on the grass thread and various sizes of stitching. Some were perfectly symmetrical and mine was not. I looked at the progression of my co-produced Elder piece and began to assess my own basket construction qualities and thinking about specific techniques that I need to develop further. Although my sewing was fast, I deemed that it was not the best quality after comparing it to the work of others. I was motivated to continue grass sewing and to improve my own techniques based on observation of others' work.

While we were not in a village in a traditional Yup'ik setting, Yup'ik-style pedagogy was evident from the teachings of this Yup'ik Elder in terms of expert-apprenticeship modeling, peer tutoring, guided practice, discovery, inquiry, use of metaphors, self-assessment, and observation.

When Yup'ik Elders are the teachers of Yup'ik activities, components of Yup'ik pedagogy emerge and will be identified within my research.

Cognition

Observation of the Elders sheds light on innate abilities, learning preferences, and cognitive processing. The current trend in Alaska teacher preparation programs is to incorporate Universal Design for Learning (UDL). As an instructor of pre-service teachers at the University of Alaska Southeast, I guided students to understand the UDL philosophy and its relevance to Alaska Native students. UDL prescribes instruction and assessment through multiple students' strengths of preferred learning modalities within a given lesson. In other words, teachers must find multiple instruction methods that will work for all students. Teachers are expected to take into consideration Howard Gardner's theory of multiple intelligences (1999), Kenneth and Rita Dunn's learning styles theory (1999), and local community culture. UDL lessons are based on the student's cognitive strengths and provide opportunities for students to demonstrate their knowledge in a variety of formats. This is a major deviation from the current dominant education practice that most current pre-service and experienced teachers underwent as students, in which everyone must learn the same information the same way and be able to show it on a paper pencil test.

As a current special education teacher I develop individual learning plans and train general education staff how to teach to a given student's strengths. This requires that I obtain an intimate understanding of cognitive functioning for each student through standardized cognitive and education assessments, observations of the student in and out of the classroom, interviews, and the review of work samples. After reading and interpreting countless cognitive reports, it is my opinion that Alaska Native students and non-native Alaska rural students possess different

cognitive strengths than the dominant white student population in urban schools (Personal observation, 2002-2014). My Master's Degree thesis studied standardized assessments, their cultural validity and psychological effects on Alaskan Natives and American Indians (AN/AI) in special education (Parsons, 2011). I found that the United States Government has called upon its own Department of Education to develop assessment tools that will be valid to assess (AN/AI) people since the 1920's because the current, then-and-now, standardized assessment tools are culturally invalid. Today, almost 100 years later, special education teachers and school psychologists are mandated by Federal, State and local School District policy to use standardized assessments that are culturally invalid on AN/AI students.

My experience as an educator in Alaska suggests that when we teach to students' natural cognitive strengths they are more likely to master and apply the curriculum presented in the classroom. Therefore, the element of cognition is incorporated into my research framework. In this element I include my personal observations of Yup'ik cognitive strengths. These include Gardner's intelligences of naturalist, logical-mathematical, spatial, and kinesthetic, as they are the four most frequently observed. Also included are Kawagley's descriptions of visual thinking, intuition, thinking in Yup'ik, and logical-sequential, as well as Dunn & Dunn's frequently observed learning styles of visual, tactual, kinesthetic, global-analytical processor, and persistent. Many of these are found in the grass basket sewing example above.

Math in a Cultural Context Project

The final element of my framework rests with the MCC project where my research will lie. Lipka has developed a balanced and respectful approach for working with ancestral knowledge given by Elders. Lipka welcomed me into his group of participant researchers as I embarked on my doctoral studies in 2011. As an observer of the MCC project and Lipka's

methodology, I quickly realized that the project's success is largely based upon the long-term relationships that Lipka has developed with the Elders over a 30-year period. Lipka practices the Four R's as described by Kirkness & Barnhardt (1991): he *respects* the Elders for whom they are; he honors and validates practices that are *relevant* to the Elder's view of the world; he practices *reciprocity* through understanding and building upon the cultural background of the Elders with emphasis on making teaching and learning a two-way processes; and Lipka is *responsible* to the Elders, ensuring institutional respect for their Indigenous knowledge and practices. In practicing the 4 R's -- respect, reciprocity, relevance, and responsible -- Lipka demonstrates an ability to help Elders to appreciate and build upon their customary forms of consciousness and representations.

Lipka's approach incorporates components of joint activity theory as described by Luis Radford and Wolff-Michael Roth in 2010 as applied to classroom mathematical skill acquisition. Radford and Roth draw on the work of Vygotsky and Leont'ev, developing an approach to understand specific human forms of knowing that emerge when people engage in joint activity. I will use an out-of-school example of the snowshoe activity mentioned above, where a powerful transition unfolded to develop a collective cultural consciousness. The common collective endeavor was to document traditional construction of the snowshoe using traditional Yup'ik language and methods.

The activity began with one Elder explaining his method from a scaled model. Elders demonstrated their respective techniques, discussing purpose while collectively reflecting on and identifying similarities and differences within the sequence of construction using specific Yup'ik terminology. Elders interactively discussed their respective societal-historical means and processes of snowshoe construction, conceptualizing the relation between the individual and

village practices through language similarities and differences. As the activity unfolded with physical materials, Elders exchanged roles of teacher and student, explaining their respective embedded thought process and perspective.

Through collaborative and reciprocating interactions, Elders and researchers became acquainted with inherently collective significations ("meanings") and Elders concretized them in the form of personal sense. "These significations ("meanings") are collective because the signs used in and for communication (words, intonation, gestures, body position and orientation) are the results of, and are marked by, cultural-historical processes, which also mark personal sense." (Radford and Roth, 2010). The practical activity of snowshoe construction produced historical, collective and individual consciousness when using Radford and Roth's 2010 description of consciousness as something concrete: it is a subjective reflection of the world that expresses the concrete affective relationship between the individual and her sociocultural, historically-situated setting. Consciousness includes thinking and emotional orientation which Radford and Roth assert can be grasped through its overt manifestations found in speech, gestures, and all sensuous actions.

Lipka's application of joint activity theory proves to be a research method component in which Yup'ik Elders are comfortable and willing to participate. Elders are empowered to clarify and define a cultural consciousness from their worldview that explains traditional Yup'ik construction of a cultural item containing many mathematical processes. As the Elder's information is documented in Yup'ik and English, they are asked in Yup'ik if it is recorded accurately. Corrections are made until the Elders are collectively satisfied that the documentation is reflective of what they are collectively communicating.

Moving forward

Current best practices for culturally-based education calls for the inclusion of a group's culture, including traditional teachings from Elders, grounding in the group's heritage language, and inclusion of a group's cosmology. At the American Indian Teacher Education Conference at Northern Arizona University in Flagstaff on June 6, 2009, Dr. Demmert presented that (page 1):

Harvard professor Jerome Bruner notes, "culture shapes mind...it provides us with the tool kit by which we construct not only our worlds but our very conceptions of ourselves and our powers." He further states that "you cannot understand mental activity unless you take into account the cultural setting and its resources, the very things that give mind its shape and scope. Learning, remembering, talking, imaging: all of them are made possible by participating in a culture" (Bruner, 1996, pp. x-xi). A child's education must include social, emotional, and ethical competencies as well as academic priorities. A growing number of schools serving Indigenous communities agree with these premises conceptually. The task as we envision it is to accomplish this in a culturally compatible and supportive environment.

Dr. Kawagley, in *A Yupiaq Worldview* (1995, p. 116), describes important elements that need to be considered in culturally-based Yup'ik education. He states:

...we should make use of the Yupiaq language because it is a tool of the spirit and therefore the voice of the culture....Elder participation is critical to Yupiaq science teaching. Their thinking, learning, and desire to convey the age-old products of wisdom, including individual and group fortitude, values of life, liberty, and the pursuit of happiness are based firmly on Yupiaq spirituality and worldview. The premise in teaching Yupiaq science is to begin with the environment, ensuring cultural sensitivity and relevancy, because it is something Elders are most intimately in tune with.

My Indigenous-influenced ethnomathematic framework in Figure 2 above, will guide my process of examining and describing Yup'ik item construction from the *ayagneq* (starting point) with *qukaq* or Center as the place to begin as my hypothesis of the axis of Yup'ik mathematical processes. The interconnected elements: Elders, language, cosmology & worldview, nature/environment, values, pedagogy, and cognition will be taken into account and documented as components that give mind its shape and scope ensuring cultural sensitivity and relevancy while identifying mathematical processes. Using my framework I will attempt to answer the following emerging questions: What are the mathematical processes contained within the item construction? Does the Yup'ik process of traditional item construction contain mathematical ways of thinking and doing? Will some of the mathematical concepts (including Center Point), identified at MCC Yup'ik Elders meetings, be applied throughout traditional item construction? Findings of my research will be available on the Alaska Native Knowledge Network website.

References

- Axiology, Epistemology, & Cosmology. 2014. In Merriam-Webster.com. Retrieved March 17, 2014, from http://www.merriam-webster.com/dictionary
- Barnhardt, R. & Kawagley, A. (1999). Education Indigenous to Place: Western Science Meets
 Indigenous Reality. Smith, G. & Williams, D. (Eds). In *Ecological Education in Action*.

 (pp. 117-140). New York: SUNY Press.
- Barton, B. (1996). *Making sense of ethnomathematics: ethnomathematics is making sense*.

 Educational Studies in Mathematics, Vol. 31, No. 1/2, Socio-Cultural Approaches to Mathematics Teaching and Learning (Sep., 1996), pp. 201-233. Published by: Springer. Article Stable URL: http://www.jstor.org/stable/3482940
- Bielawski, E. (1990, August). *Cross-cultural epistemology: Cultural readaptation through the pursuit of knowledge*. In 7th Inuit Studies Conference, University of Alaska Fairbanks.
- Denig, S. J. (January 01, 2004). Multiple Intelligences and Learning Styles: Two Complementary Dimensions. *Teachers College Record*, *106*, 1, 96-111.
- D'Ambrosio, U. (2004). Preface. Ethnomathematics and mathematics education. *Proceedings of the 10th International Congress of Mathematics Education Copenhagen*. ISBN: 978-88-8250-069-1
- Demmert, W.G. (2011). What is culture-based education? Understanding pedagogy and curriculum. In Reyhner, J. A., Gilbert, W. S., & Lockard, L. (Eds.), *Honoring our heritage: Culturally appropriate approaches for teaching indigenous students* (pp. 1-9). Flagstaff: Northern Arizona University.
- Drahos, P. (2011). When Cosmology Meets Property: Indigenous Peoples' Innovation and Intellectual Property. Queen Mary University of London, School of Law Legal Studies

- Research Paper No. 90/2011. Electronic copy available at: http://ssrn.com/abstract=1946119
- Dunn, R. & Dunn, K. (1999). *The complete guide to the learning styles inservice system*. Boston: Allyn & Bacon.
- Fienup-Riordan, A. (1990). *Eskimo essays: Yup'ik lives and how we see them.* New Brunswick, NJ. Rutgers University Press.
- Gardner, H. (1991). The Unschooled Mind. New York: BasicBooks.
- Gardner, H. (1999). *Intelligence reframed: Multiple intelligences for the 21st century*. New York: Basic Books.
- Grigorenko, E. L., Meier, E., Lipka, J., Mohatt, G., Yanez, E., & Sternberg, R. J. (2004).

 Academic and practical intelligence: A case study of the Yup'ik in Alaska. Learning and Individual Differences, 14(4), 183-207.
- Hart, M. A. (2010). Indigenous Worldviews, Knowledge, and Research: The Development of an Indigenous Research Paradigm. E-ISSN 2151-349X, pp. 1-16 Journal of IndigenousVoices in Social Work. Volume 1, Issue 1 (February 2010)
- Jacobson, S. A. (2012). Yup'ik Eskimo Dictionary (2nd ed, Vols.1-2).
- Kawagley, A. Oscar. (1995). A Yupiaq Worldview: A Pathway to Ecology and Spirit. Prospect Heights, IL.
- Kirkness, V.J. & Barnhardt, R. (1991, May). First nations and higher education: the four R's-respect, relevance, reciprocity, responsibility. Journal of American Indian Education

 Volume 30 Number 3
- Kisker, E. E., Lipka, J., Adams, B. L., Rickard, A., Andrew-Ihrke, D., Yanez, E. E., & Millard, A. (2012). The Potential of a Culturally Based Supplemental Mathematics Curriculum to

- Improve the Mathematics Performance of Alaska Native and Other Students. Journal for Research in Mathematics Education, 43(1), 75-113.
- Lipka, J. (2005). The relevance of culturally based curriculum and instruction: The case of Nancy Sharp. Journal of American Indian Education, 44(3), 31-54.
- Lipka, J., & Adams, B. L. (2004). Some evidence for ethnomathematics: Quantitative and qualitative data from Alaska. DG15: Ethnomathematics at ICME-10 in Denmark.
- Lipka, J., & Andrew-Ihrke, D. (2009). Ethnomathematics applied to classrooms in Alaska: Math in a cultural context. NASGEm Newsletter, 3(1), 8-10.
- Lipka, J., Andrew–Ihrke, D., & Yanez, E. E. (2009). Yup'ik cosmology to school mathematics: The power of symmetry and proportional measuring. *Interchange*, *42*(2), 157-183.
- Lipka, J., Mohatt, G. V., & Ciulistet. (1998). Transforming the culture of schools: Yup'ik Eskimo examples. Mahwah, N.J.: Lawrence Erlbaum Associates.
- Lipka, Wong, M., & Andrew-Ihrke, D. (2012). Alaska Native Indigenous knowledge: opportunities for learning mathematics. Mathematics Education Research, 25(1), 129-150. doi: 10.1007/s13394-012-0061-4
- Marlow, C. B. & Bailey A. C. (2006). Indigenous Cosmology: From Left Field to Center Stage.

 Ringing Rocks Foundation Lecture Series, Sedona, Arizona, October 6, 2006.
- Parsons, Kristie. (2011). Validity questioned: psychological effects of standardized testing on Alaskan Natives and American Indians in special education, a meta-synthesis (Master's thesis). University of Alaska Southeast, Juneau, AK
- Radford, L. & Roth, W. (2010). *Intercorporeality and ethical commitment: an activity* perspective on classroom interaction. Educ Stud Math (2011) 77:227–245. DOI

- 10.1007/s10649-010-9282-1. Published online: 3 December 2010 # Springer Science+Business Media B.V. 2010
- Smith, G., (2003). *Indigenous struggle for the transformation of education and schooling*.

 Retrieved from http://ankn.uaf.edu/curriculum/articles/grahamsmith/ on April 30, 2014.
- Sternberg, R., Lipka, J., Newman, T., Wildfeuer, S., & Grigorenko, E. L. (2006). Triarchically-based instruction and assessment of sixth-grade mathematics in a Yup'ik cultural setting in Alaska. Gifted and Talented International, 21(2), 6-19.
- Turner, T. (2008). *Cosmology, objectification and animism in indigenous Amazonia*. Keynote address presented to the inaugural meeting of the Nordic Network for Amerindian Studies, Copenhagen, Denmark, Nov. 9, 2008.
- Universal Design for Learning. Available: http://www.cast.org
- Wilson, Shawn. (2008). Research is ceremony: indigenous research methods. Black Point, N.S.: Fernwood Pub.